翻訳と辞書 |
Normal p-complement : ウィキペディア英語版 | Normal p-complement In mathematical group theory, a normal p-complement of a finite group for a prime ''p'' is a normal subgroup of order coprime to ''p'' and index a power of ''p''. In other words the group is a semidirect product of the normal ''p''-complement and any Sylow ''p''-subgroup. A group is called p-nilpotent if it has a normal ''p''-complement. ==Cayley normal 2-complement theorem==
Cayley showed that if the Sylow 2-subgroup of a group ''G'' is cyclic then the group has a normal 2-complement, which shows that the Sylow 2-subgroup of a simple group of even order cannot be cyclic.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Normal p-complement」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|